

Central T&E Investment Program (CTEIP) Swarm Autonomy

Autonomous Swarms of High Speed Maneuvering Surface Vessels Tyler Halpin-Chan¹, Varun Varahamurthy¹, Josh Vanderhook² December 12, 2018

Naval Air Warfare Center Weapons Division, Point Mugu, CA

Jet Propulsion Laboratory California Institute of Technology

> Tyler Halpin-Chan NAWCWD 805 989-5265 tyler.halpin-chan@navy.mil

Outline

- Overview
- Method of Test
- Test Scenarios
- Results
- Conclusions

- The Surface Targets Engineering Branch (STEB) has the world's largest USV (Unmanned Surface Vessel) fleet and developed the USV and the GUI (Graphical User Interface)
- The Jet Propulsion Laboratory (JPL) has developed the swarm algorithms for this project
- The HSMST as a USV has demonstrated its capabilities during the Phase I and II Demos of the CTEIP Swarm Autonomy Project
- The HSMST (High Speed Maneuverable Surface Target) has the network infrastructure to operate in a decentralized swarm
 - Local computations performed onboard the HSMST
 - Information shared between other participating HSMSTs

Overview: Purpose

- HSMSTs
 - are used in large-scale demonstrations
 - represent asymmetric naval threats
- The CTEIP Swarm Autonomy Project desired to increase the number of boats one operator could control

Swarm Autonomy

Approved for public release; distribution is unlimited. NAWCWD PR18-0260

12/12/2018 4

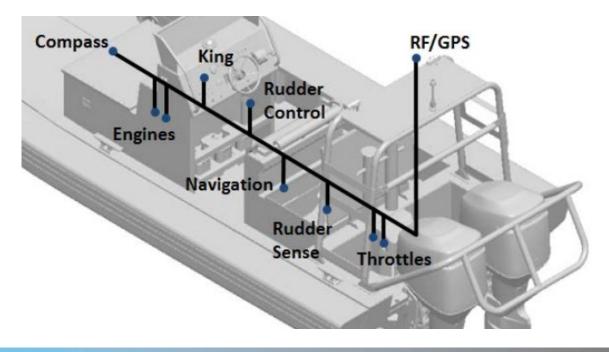
Overview: HSMST

Unique
Features8m Aluminum deep vee46+kt top speedFoam filled w/closed cell
sponsons2x200hp outboard engines

Swarm Autonomy

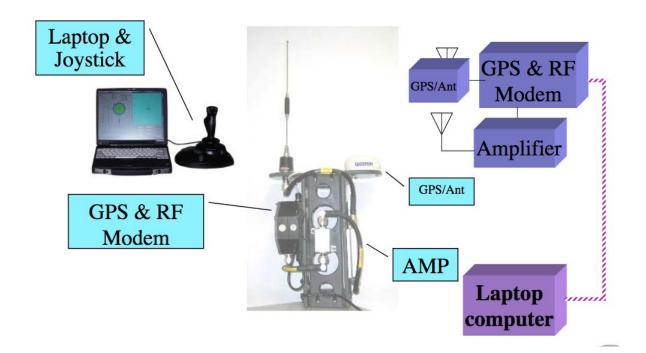
Approved for public release; distribution is unlimited. NAWCWD PR18-0260

12/12/2018


ತ

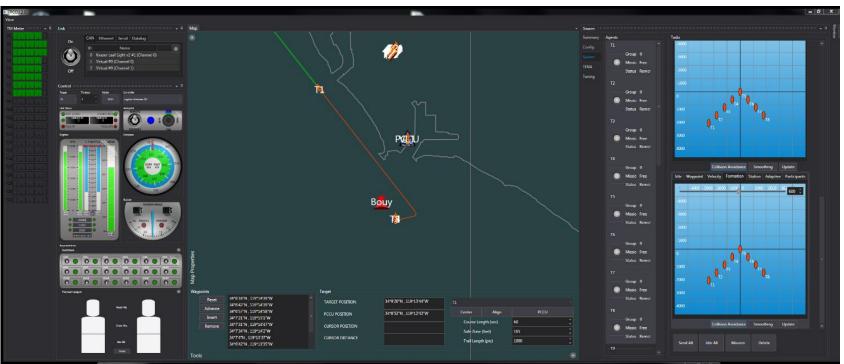
Overview: SeaCAN

- SeaCAN (Sea Controller Area Network)
 - Uses the CAN bus to send a set of standardized messages between microcontrollers called nodes
 - Each node has a specific function, sometimes unique sensors
 - SeaCAN can be adapted to work on other surface vessel platforms
- HSMSTs share information with other boats in the swarm including
 - GPS location
 - Heading
 - Speed



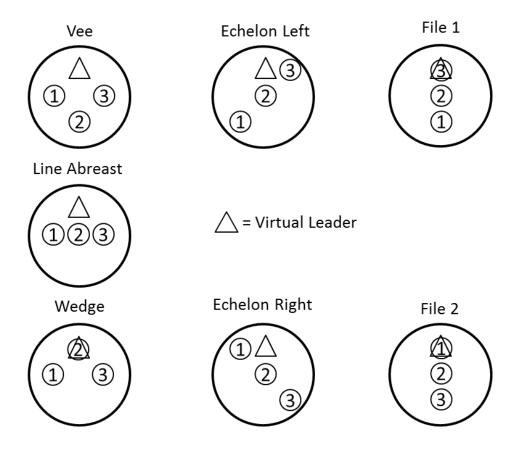
Overview: PCCU

- PCCU (Portable Command and Control Unit)
 - Connects to SeaCAN via a RF link
 - Facilitates remote control of SeaCAN compatible surface vehicles
 - HSMSTs can be controlled by an on-board Operator, the PCCU, or Autonomy



Overview: PCCU 2.0 GUI

- PCCU 2.0 GUI
 - is a reimplementation of the original, tried-and-tested PCCU 1.0. It features many of the same functions and interfaces that PCCU operators are already trained in.
- PCCU 2.0 is written in C#/WPF, a more modern, secure, and maintainable framework allowing for rapid and secure development.


Swarm Autonomy

Overview: Formation Types

- Desired formation types include (but are not limited to) the following:
 - Vee
 - Line Abreast
 - Wedge
 - Echelon Left
 - Echelon Right
 - File

- JPL developed the autonomy algorithm for the HSMSTs
- Main outputs of the algorithm (per boat) are:
 - Desired Path
 - Preferred Controls
 - Safe Controls
- SeaCAN receives only the Safe Controls (Requested Speed and Heading) and executes that command

Method of Test: Safety

- Similar to testing in the autonomous car industry, safety operators were required for initial tests of HSMST autonomy
- Safety operators were trained to
 - recognize abnormal autonomous behavior
 - communicate relevant information in short-hand over radio comms
 - stop the engines in case of emergency
- Other layers of safety included (but are not limited to)
 - PCCU operator "Idle All" command
 - HSMST telemetry timeouts
 - Safe zone radii around each boat

Swarm Autonomy

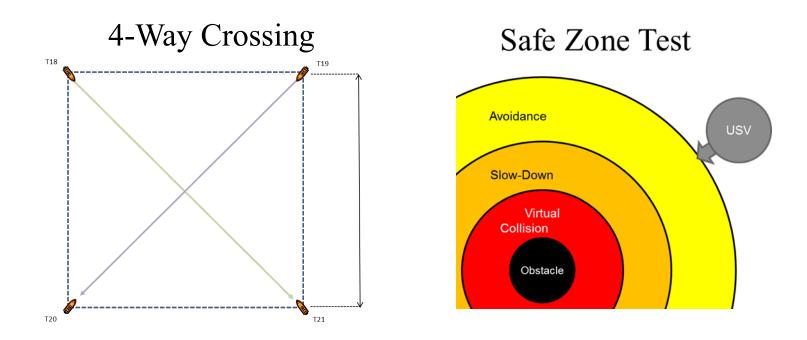
- Ramp up procedures
 - Test scenarios designed to be completed at low, medium, high and mixed speeds
 - HSMSTs have a displacement and planing mode
 - Test in lower sea state before going to higher
 - Ramp up in complexity for boat operator understanding

Swarm Autonomy

Approved for public release; distribution is unlimited. NAWCWD PR18-0260

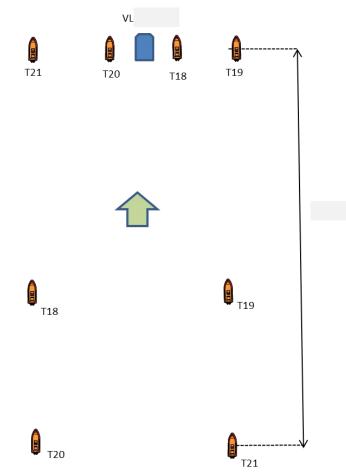
12/12/2018 12

- The Virtual Leader (VL) concept was developed to
 - Make the transition from controlling 1 boat to a swarm easier
 - VL cannot be destroyed during a test
 - Reduces logic required for leader handoff

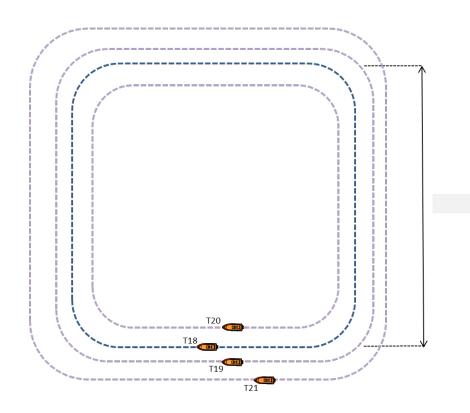

- Virtually infinite number of testable scenarios (i.e. formation switches)
- Different scenarios were developed to test discrete autonomous functions:
 - -3 & 4 Way Collision Avoidance
 - Formation commands
 - Arbitrary Start
 - Turning CW & CCW
 - Static/Adaptive Switching
 - Coordinated Weaving

Test Scenarios: Collision Avoidance

- Collision Avoidance
 - Safe Zone Test
 - 3-Way Crossing
 - 4-Way Crossing



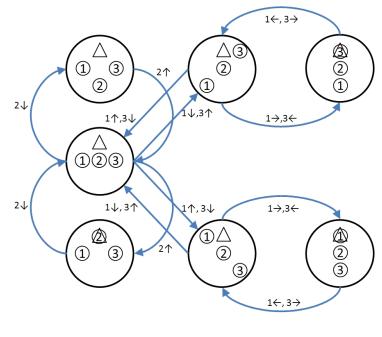
Test Scenarios: Arbitrary Start


• Arbitrary Start into line abreast, wedge, vee, echelon left+right, and file

- Formation with 90 Degree Turns, CW & CCW
- Wedge causes CW & CCW to not be symmetrical

Swarm Autonomy

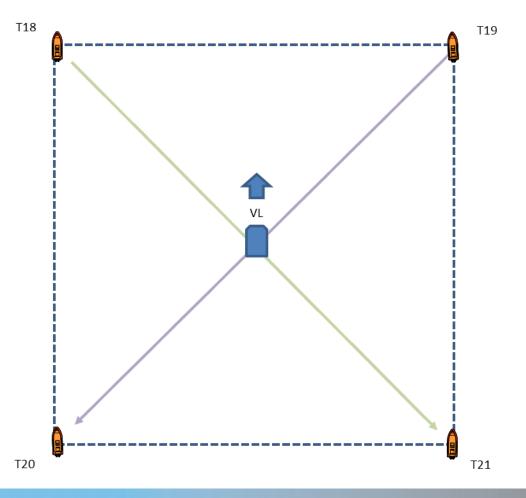
Test Scenarios: Formation Switches


- Changing to Static and Adaptive Formations
- Adaptive formations can rank switch; Static are fixed rank

 \wedge = Virtual Leader

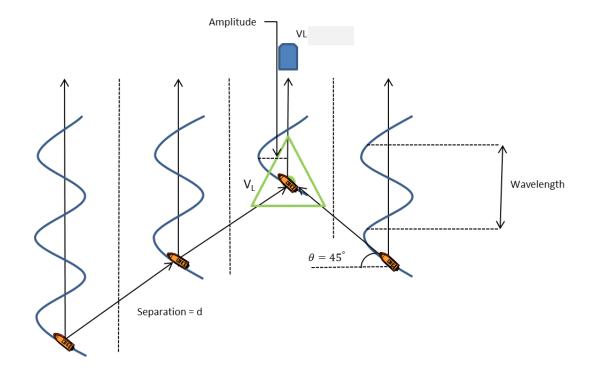
- Formation switches no longer need to follow the Phase 1 Formation Switch Diagram
- Some formation switches were not known to JPL during development in order to test algorithm robustness

Phase 1 Formation Switch State Diagram



 \triangle = Virtual Leader

Test Scenarios: Hidden Formation


Swarm Autonomy

Test Scenarios: Formation Weave

Coordinated Weaves in Wedge Formation

Results

- Raspberri Pi 3 chosen as the STT hardware
 - The Pi is a credit card sized computer (this particular variant costs \$135)
 - JPL ported code to the Pi
- New PCCU 2.0 built from the ground up to improve GUI capability
 - Written in C# using WPF
 - Supports modern libraries and plugins
 - Improves operator situational awareness by supporting multi-monitor configurations

Results: Video Summary

DISTRIBUTION STATEMENT A. Approved for Public Release. Distribution Unlimited.

Swarm Autonomy

Approved for public release; distribution is unlimited. NAWCWD PR18-0260

12/12/2018 22

- All 38 test scenarios were completed at low, med, and high speeds (when applicable)
- No safety incidents
 - Safety precautions proved to be adequate
- One PCCU operator was used to conduct the entire week long test
- Demonstrated a method to test an autonomous sytem
- "Robustness" was determined by using hidden formations
- Provides target customers with high repeatability and precision

- Algorithm development for collision avoidance and formation control occurred at the Jet Propulsion Laboratory, California Institute of Technology
- Project Management, GUI and HSMST firmware development was carried out by the STEB
- Supported in part by the U.S. Department of Defense, Test Resource Management Center, Test & Evaluation/Science and Technology (T&E/S&T) Program under NASA prime contract NNN12AA01C, Task Plan Number 81-103286.